单元测试的强与弱问题

最近看了一个项目做的单元测试,很不满意——单元测试框架做得太好了。

单元测试的框架不能做得太好,单元测试的主角是被测试的那个代码,不是单元测试的框 架,把单元测试框架做得太好,结果就是测试效果大打折扣。

这就好比你盖房子,脚手架搭得比房子还漂亮,房子有可能搭的好吗?

我们看一些细节,比如你测试Linux内核的一个模块,这个模块包含了<include/sched.h> ,用到里面的struct task_struct {}。你应该怎么打桩?有人会找一个Linux版本,把这 个结构整个拷贝进来::

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
        /*
         * For reasons of header soup (see current_thread_info()), this
         * must be the first element of task_struct.
         */
        struct thread_info              thread_info;
#endif
        /* -1 unrunnable, 0 runnable, >0 stopped: */
        volatile long                   state;

        /*
         * This begins the randomizable portion of task_struct. Only
         * scheduling-critical items should be added above here.
         */
        randomized_struct_fields_start

        void                            *stack;
        atomic_t                        usage;
        /* Per task flags (PF_*), defined further below: */
        unsigned int                    flags;
        unsigned int                    ptrace;

#ifdef CONFIG_SMP
        struct llist_node               wake_entry;
        int                             on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
        /* Current CPU: */
        unsigned int                    cpu;
#endif
        unsigned int                    wakee_flips;
        unsigned long                   wakee_flip_decay_ts;
        struct task_struct              *last_wakee;

        /*
         * recent_used_cpu is initially set as the last CPU used by a task
         * that wakes affine another task. Waker/wakee relationships can
         * push tasks around a CPU where each wakeup moves to the next one.
         * Tracking a recently used CPU allows a quick search for a recently
         * used CPU that may be idle.
         */
        int                             recent_used_cpu;
        int                             wake_cpu;
#endif
        int                             on_rq;

        int                             prio;
        int                             static_prio;
        int                             normal_prio;
        unsigned int                    rt_priority;

        const struct sched_class        *sched_class;
        struct sched_entity             se;
        struct sched_rt_entity          rt;
#ifdef CONFIG_CGROUP_SCHED
        struct task_group               *sched_task_group;
#endif
        struct sched_dl_entity          dl;

#ifdef CONFIG_PREEMPT_NOTIFIERS
        /* List of struct preempt_notifier: */
        struct hlist_head               preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
        unsigned int                    btrace_seq;
#endif

        unsigned int                    policy;
        int                             nr_cpus_allowed;
        cpumask_t                       cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
        int                             rcu_read_lock_nesting;
        union rcu_special               rcu_read_unlock_special;
        struct list_head                rcu_node_entry;
        struct rcu_node                 *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */

#ifdef CONFIG_TASKS_RCU
        unsigned long                   rcu_tasks_nvcsw;
        u8                              rcu_tasks_holdout;
        u8                              rcu_tasks_idx;
        int                             rcu_tasks_idle_cpu;
        struct list_head                rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */

        struct sched_info               sched_info;

        struct list_head                tasks;
#ifdef CONFIG_SMP
        struct plist_node               pushable_tasks;
        struct rb_node                  pushable_dl_tasks;
#endif

        struct mm_struct                *mm;
        struct mm_struct                *active_mm;

        /* Per-thread vma caching: */
        struct vmacache                 vmacache;

#ifdef SPLIT_RSS_COUNTING
        struct task_rss_stat            rss_stat;
#endif
        int                             exit_state;
        int                             exit_code;
        int                             exit_signal;
        /* The signal sent when the parent dies: */
        int                             pdeath_signal;
        /* JOBCTL_*, siglock protected: */
        unsigned long                   jobctl;

        /* Used for emulating ABI behavior of previous Linux versions: */
        unsigned int                    personality;

        /* Scheduler bits, serialized by scheduler locks: */
        unsigned                        sched_reset_on_fork:1;
        unsigned                        sched_contributes_to_load:1;
        unsigned                        sched_migrated:1;
        unsigned                        sched_remote_wakeup:1;
#ifdef CONFIG_PSI
        unsigned                        sched_psi_wake_requeue:1;
#endif

        /* Force alignment to the next boundary: */
        unsigned                        :0;

        /* Unserialized, strictly 'current' */

        /* Bit to tell LSMs we're in execve(): */
        unsigned                        in_execve:1;
        unsigned                        in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
        unsigned                        restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
        unsigned                        in_user_fault:1;
#endif
#ifdef CONFIG_COMPAT_BRK
        unsigned                        brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
        /* disallow userland-initiated cgroup migration */
        unsigned                        no_cgroup_migration:1;
#endif
#ifdef CONFIG_BLK_CGROUP
        /* to be used once the psi infrastructure lands upstream. */
        unsigned                        use_memdelay:1;
#endif

        /*
         * May usercopy functions fault on kernel addresses?
         * This is not just a single bit because this can potentially nest.
         */
        unsigned int                    kernel_uaccess_faults_ok;

        unsigned long                   atomic_flags; /* Flags requiring atomic access. */

        struct restart_block            restart_block;

        pid_t                           pid;
        pid_t                           tgid;

#ifdef CONFIG_STACKPROTECTOR
        /* Canary value for the -fstack-protector GCC feature: */
        unsigned long                   stack_canary;
#endif
        /*
         * Pointers to the (original) parent process, youngest child, younger sibling,
         * older sibling, respectively.  (p->father can be replaced with
         * p->real_parent->pid)
         */

        /* Real parent process: */
        struct task_struct __rcu        *real_parent;

        /* Recipient of SIGCHLD, wait4() reports: */
        struct task_struct __rcu        *parent;

        /*
         * Children/sibling form the list of natural children:
         */
        struct list_head                children;
        struct list_head                sibling;
        struct task_struct              *group_leader;

        /*
         * 'ptraced' is the list of tasks this task is using ptrace() on.
         *
         * This includes both natural children and PTRACE_ATTACH targets.
         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
         */
        struct list_head                ptraced;
        struct list_head                ptrace_entry;

        /* PID/PID hash table linkage. */
        struct pid                      *thread_pid;
        struct hlist_node               pid_links[PIDTYPE_MAX];
        struct list_head                thread_group;
        struct list_head                thread_node;

        struct completion               *vfork_done;

        /* CLONE_CHILD_SETTID: */
        int __user                      *set_child_tid;

        /* CLONE_CHILD_CLEARTID: */
        int __user                      *clear_child_tid;

        u64                             utime;
        u64                             stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
        u64                             utimescaled;
        u64                             stimescaled;
#endif
        u64                             gtime;
        struct prev_cputime             prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
        struct vtime                    vtime;
#endif

#ifdef CONFIG_NO_HZ_FULL
        atomic_t                        tick_dep_mask;
#endif
        /* Context switch counts: */
        unsigned long                   nvcsw;
        unsigned long                   nivcsw;

        /* Monotonic time in nsecs: */
        u64                             start_time;

        /* Boot based time in nsecs: */
        u64                             real_start_time;

        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
        unsigned long                   min_flt;
        unsigned long                   maj_flt;

#ifdef CONFIG_POSIX_TIMERS
        struct task_cputime             cputime_expires;
        struct list_head                cpu_timers[3];
#endif

        /* Process credentials: */

        /* Tracer's credentials at attach: */
        const struct cred __rcu         *ptracer_cred;

        /* Objective and real subjective task credentials (COW): */
        const struct cred __rcu         *real_cred;

        /* Effective (overridable) subjective task credentials (COW): */
        const struct cred __rcu         *cred;

        /*
         * executable name, excluding path.
         *
         * - normally initialized setup_new_exec()
         * - access it with [gs]et_task_comm()
         * - lock it with task_lock()
         */
        char                            comm[TASK_COMM_LEN];

        struct nameidata                *nameidata;

#ifdef CONFIG_SYSVIPC
        struct sysv_sem                 sysvsem;
        struct sysv_shm                 sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
        unsigned long                   last_switch_count;
        unsigned long                   last_switch_time;
#endif
        /* Filesystem information: */
        struct fs_struct                *fs;

        /* Open file information: */
        struct files_struct             *files;

        /* Namespaces: */
        struct nsproxy                  *nsproxy;

        /* Signal handlers: */
        struct signal_struct            *signal;
        struct sighand_struct           *sighand;
        sigset_t                        blocked;
        sigset_t                        real_blocked;
        /* Restored if set_restore_sigmask() was used: */
        sigset_t                        saved_sigmask;
        struct sigpending               pending;
        unsigned long                   sas_ss_sp;
        size_t                          sas_ss_size;
        unsigned int                    sas_ss_flags;

        struct callback_head            *task_works;

        struct audit_context            *audit_context;
#ifdef CONFIG_AUDITSYSCALL
        kuid_t                          loginuid;
        unsigned int                    sessionid;
#endif
        struct seccomp                  seccomp;

        /* Thread group tracking: */
        u32                             parent_exec_id;
        u32                             self_exec_id;

        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
        spinlock_t                      alloc_lock;

        /* Protection of the PI data structures: */
        raw_spinlock_t                  pi_lock;

        struct wake_q_node              wake_q;

#ifdef CONFIG_RT_MUTEXES
        /* PI waiters blocked on a rt_mutex held by this task: */
        struct rb_root_cached           pi_waiters;
        /* Updated under owner's pi_lock and rq lock */
        struct task_struct              *pi_top_task;
        /* Deadlock detection and priority inheritance handling: */
        struct rt_mutex_waiter          *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
        /* Mutex deadlock detection: */
        struct mutex_waiter             *blocked_on;
#endif

#ifdef CONFIG_TRACE_IRQFLAGS
        unsigned int                    irq_events;
        unsigned long                   hardirq_enable_ip;
        unsigned long                   hardirq_disable_ip;
        unsigned int                    hardirq_enable_event;
        unsigned int                    hardirq_disable_event;
        int                             hardirqs_enabled;
        int                             hardirq_context;
        unsigned long                   softirq_disable_ip;
        unsigned long                   softirq_enable_ip;
        unsigned int                    softirq_disable_event;
        unsigned int                    softirq_enable_event;
        int                             softirqs_enabled;
        int                             softirq_context;
#endif

#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH                 48UL
        u64                             curr_chain_key;
        int                             lockdep_depth;
        unsigned int                    lockdep_recursion;
        struct held_lock                held_locks[MAX_LOCK_DEPTH];
#endif

#ifdef CONFIG_UBSAN
        unsigned int                    in_ubsan;
#endif

        /* Journalling filesystem info: */
        void                            *journal_info;

        /* Stacked block device info: */
        struct bio_list                 *bio_list;

#ifdef CONFIG_BLOCK
        /* Stack plugging: */
        struct blk_plug                 *plug;
#endif

        /* VM state: */
        struct reclaim_state            *reclaim_state;

        struct backing_dev_info         *backing_dev_info;

        struct io_context               *io_context;

        /* Ptrace state: */
        unsigned long                   ptrace_message;
        kernel_siginfo_t                *last_siginfo;

        struct task_io_accounting       ioac;
#ifdef CONFIG_PSI
        /* Pressure stall state */
        unsigned int                    psi_flags;
#endif
#ifdef CONFIG_TASK_XACCT
        /* Accumulated RSS usage: */
        u64                             acct_rss_mem1;
        /* Accumulated virtual memory usage: */
        u64                             acct_vm_mem1;
        /* stime + utime since last update: */
        u64                             acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
        /* Protected by ->alloc_lock: */
        nodemask_t                      mems_allowed;
        /* Seqence number to catch updates: */
        seqcount_t                      mems_allowed_seq;
        int                             cpuset_mem_spread_rotor;
        int                             cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
        /* Control Group info protected by css_set_lock: */
        struct css_set __rcu            *cgroups;
        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
        struct list_head                cg_list;
#endif
#ifdef CONFIG_INTEL_RDT
        u32                             closid;
        u32                             rmid;
#endif
#ifdef CONFIG_FUTEX
        struct robust_list_head __user  *robust_list;
#ifdef CONFIG_COMPAT
        struct compat_robust_list_head __user *compat_robust_list;
#endif
        struct list_head                pi_state_list;
        struct futex_pi_state           *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
        struct mutex                    perf_event_mutex;
        struct list_head                perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
        unsigned long                   preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
        /* Protected by alloc_lock: */
        struct mempolicy                *mempolicy;
        short                           il_prev;
        short                           pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
        int                             numa_scan_seq;
        unsigned int                    numa_scan_period;
        unsigned int                    numa_scan_period_max;
        int                             numa_preferred_nid;
        unsigned long                   numa_migrate_retry;
        /* Migration stamp: */
        u64                             node_stamp;
        u64                             last_task_numa_placement;
        u64                             last_sum_exec_runtime;
        struct callback_head            numa_work;

        struct numa_group               *numa_group;

        /*
         * numa_faults is an array split into four regions:
         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
         * in this precise order.
         *
         * faults_memory: Exponential decaying average of faults on a per-node
         * basis. Scheduling placement decisions are made based on these
         * counts. The values remain static for the duration of a PTE scan.
         * faults_cpu: Track the nodes the process was running on when a NUMA
         * hinting fault was incurred.
         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
         * during the current scan window. When the scan completes, the counts
         * in faults_memory and faults_cpu decay and these values are copied.
         */
        unsigned long                   *numa_faults;
        unsigned long                   total_numa_faults;

        /*
         * numa_faults_locality tracks if faults recorded during the last
         * scan window were remote/local or failed to migrate. The task scan
         * period is adapted based on the locality of the faults with different
         * weights depending on whether they were shared or private faults
         */
        unsigned long                   numa_faults_locality[3];

        unsigned long                   numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

#ifdef CONFIG_RSEQ
        struct rseq __user *rseq;
        u32 rseq_len;
        u32 rseq_sig;
        /*
         * RmW on rseq_event_mask must be performed atomically
         * with respect to preemption.
         */
        unsigned long rseq_event_mask;
#endif

        struct tlbflush_unmap_batch     tlb_ubc;

        struct rcu_head                 rcu;

        /* Cache last used pipe for splice(): */
        struct pipe_inode_info          *splice_pipe;

        struct page_frag                task_frag;

#ifdef CONFIG_TASK_DELAY_ACCT
        struct task_delay_info          *delays;
#endif

#ifdef CONFIG_FAULT_INJECTION
        int                             make_it_fail;
        unsigned int                    fail_nth;
#endif
        /*
         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
         * balance_dirty_pages() for a dirty throttling pause:
         */
        int                             nr_dirtied;
        int                             nr_dirtied_pause;
        /* Start of a write-and-pause period: */
        unsigned long                   dirty_paused_when;

#ifdef CONFIG_LATENCYTOP
        int                             latency_record_count;
        struct latency_record           latency_record[LT_SAVECOUNT];
#endif
        /*
         * Time slack values; these are used to round up poll() and
         * select() etc timeout values. These are in nanoseconds.
         */
        u64                             timer_slack_ns;
        u64                             default_timer_slack_ns;

#ifdef CONFIG_KASAN
        unsigned int                    kasan_depth;
#endif

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
        /* Index of current stored address in ret_stack: */
        int                             curr_ret_stack;

        /* Stack of return addresses for return function tracing: */
        struct ftrace_ret_stack         *ret_stack;

        /* Timestamp for last schedule: */
        unsigned long long              ftrace_timestamp;

        /*
         * Number of functions that haven't been traced
         * because of depth overrun:
         */
        atomic_t                        trace_overrun;

        /* Pause tracing: */
        atomic_t                        tracing_graph_pause;
#endif

#ifdef CONFIG_TRACING
        /* State flags for use by tracers: */
        unsigned long                   trace;

        /* Bitmask and counter of trace recursion: */
        unsigned long                   trace_recursion;
#endif /* CONFIG_TRACING */

#ifdef CONFIG_KCOV
        /* Coverage collection mode enabled for this task (0 if disabled): */
        unsigned int                    kcov_mode;

        /* Size of the kcov_area: */
        unsigned int                    kcov_size;

        /* Buffer for coverage collection: */
        void                            *kcov_area;

        /* KCOV descriptor wired with this task or NULL: */
        struct kcov                     *kcov;
#endif

#ifdef CONFIG_MEMCG
        struct mem_cgroup               *memcg_in_oom;
        gfp_t                           memcg_oom_gfp_mask;
        int                             memcg_oom_order;

        /* Number of pages to reclaim on returning to userland: */
        unsigned int                    memcg_nr_pages_over_high;

        /* Used by memcontrol for targeted memcg charge: */
        struct mem_cgroup               *active_memcg;
#endif

#ifdef CONFIG_BLK_CGROUP
        struct request_queue            *throttle_queue;
#endif

#ifdef CONFIG_UPROBES
        struct uprobe_task              *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
        unsigned int                    sequential_io;
        unsigned int                    sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
        unsigned long                   task_state_change;
#endif
        int                             pagefault_disabled;
#ifdef CONFIG_MMU
        struct task_struct              *oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
        struct vm_struct                *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
        /* A live task holds one reference: */
        atomic_t                        stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
        int patch_state;
#endif
#ifdef CONFIG_SECURITY
        /* Used by LSM modules for access restriction: */
        void                            *security;
#endif

#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
        unsigned long                   lowest_stack;
        unsigned long                   prev_lowest_stack;
#endif

        /*
         * New fields for task_struct should be added above here, so that
         * they are included in the randomized portion of task_struct.
         */
        randomized_struct_fields_end

        /* CPU-specific state of this task: */
        struct thread_struct            thread;

        /*
         * WARNING: on x86, 'thread_struct' contains a variable-sized
         * structure.  It *MUST* be at the end of 'task_struct'.
         *
         * Do not put anything below here!
         */
};

够长吧?——不够。

这个结构里面还用了用到了thread_info这个结构呢,然后接着把thread_info也定义进来 ,thread_info又用了另一个结构呢,你又把里面那个解构定义进来?——疯了。

哪里需要这么复杂呢,这样定义就好了::

struct task_struct {};

然后你用到哪个成员,往里面补一个int member就结了。打桩,打桩。你打的是桩,不是 真东西。你盖的是脚手架,不是房子啊。脚手架的投资比房子大,房子的建设必然受脚手 架的影响的啊。

你桩做得很精巧,很多用例肯定就上不去的呀。(注1)

再来一个例子。比如你的程序调用了remap_pfn_range(),这个桩应该怎么打?有人会这样 打::

int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
                    unsigned long pfn, unsigned long size, pgprot_t prot)
{
  return 0;
}

真是吃饱没事干,你都没有放用例进去呢,这么复杂干什么?这样就可以啦::

#define remap_pfn_range(...) 0

还有kmalloc应该怎么打?显然你不需要这样::

static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
    return malloc(size);
}

这样就可以啦::

char * testcase101_mem[1024];
void *kmalloc(...)
{
  if (testcase==101)
     return testcase101_mem;
   return NULL;
}

这才是打桩。你要测试的是你的程序,你要全部聚焦到你的程序的:

在各种极端的情况下,查找有没有遗漏?资源有没有泄漏?计算结果是否正确?等等等等 。这些逻辑才是核心,核心的不是你的测试桩。比如下面这个程序::

static inline int my_iommu_map(struct queue *q,
                                      struct qfile_region *qfr)
{
        struct device *dev = q->myhw->pdev;
        struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
        int i, j, ret;

        if (!domain)
                return -ENODEV;

        for (i = 0; i < qfr->nr_pages; i++) {
                get_page(qfr->pages[i]);
                ret = iommu_map(domain, qfr->iova + i * PAGE_SIZE,
                                page_to_phys(qfr->pages[i]),
                                PAGE_SIZE, qfr->prot | q->uacce->prot);
                if (ret) {
                        dev_err(dev, "iommu_map page %i fail %d\n", i, ret);
                        goto err_with_map_pages;
                }
        }

        return 0;

err_with_map_pages:
        for (j = i-1; j >= 0; j--) {
                iommu_unmap(domain, qfr->iova + j * PAGE_SIZE, PAGE_SIZE);
                put_page(qfr->pages[j]);
        }
        return ret;
}

你看,单元测试的聚焦点应该是:nr_pages是0, 1, 10的时候,这个流程是不是正确的 。iommu_map()在第一次,中间,最后一次的时候失败的话,是不是所有map过的page都被 释放了,所有page没有被get过。

(实际上,这个流程是有错误的,但肉眼很难看出来,但单元测试可以很轻易找出这个错 误)

而至于page_to_phys()怎么实现,关你鬼事。那是另一个系统实现得对不对,或者你对那 个系统的预期或者理解对不对的问题,那是集成测试的范畴,不是单元测试的范畴。

写程序的时候我很强调每个语句的“语义”,但单元测试的时候,我们要彻底忘掉“语义”, 眼中只有“循环”,“赋值”,“退出”这样的概念。在这个时候,dev_err不是打印, put_page()不是释放,它们都只是流程中的一个“经过点”。你不是要模拟一个真正的错误 日志或者内存释放。你要验证你设计的流程,是不是按你设定的路径在走。

关于单元测试本身的观点,我表达完了,最后说说构架和哲学。很多人觉得,我“严格要求 ”,事事做到“尽善尽美”肯定是没有错的。这是一个很生动的例子:你的观点是不对的。天 之道,高者抑之,下者举之。把事情做成是要动脑子的,是要“准”的,不是要“极致”的。

而不确定目的,无所谓“准”。

所以,我们要警惕两个设计中的常见误区。第一,不定义目的,不考虑目的,只要“努力”。

第二,寻求表面的好看:好比前面我提到的测试框架。开始的时候其实不是这样的,但发 展一段时间以后,或者独立交个一个团队后,这个团队要展现自己的“能力”,“绩效”,就 忍不住要炫技了。对那个团队来说,这个无可厚非。但对架构师来说,让非主角“好看”,“ 强”,就是让主业务“失去关注和重点”,“弱”。强弱的转变,可以发生得很快。

九层之台,起于垒土。在垒土的阶段就应该呈现为垒土,如果这个阶段就呈现为高台,这 个台就垒不起来。

注1:关于是否自己mock所有的头文件的问题

我基于本文和一个实际的例子在部门内部做了一个培训,现场不少人对不使用Linux的全集 头文件来做桩有不同意见。

这个问题首先这样说:你如果能保证聚焦到把各种极端流程都验证过,你怎么打桩,这个 不是关键问题。我们的重点不在这里。我的关注点是你把头文件搭得太好了,你失去了从 结构,定义这些角度注入数据的能力了。如果你的情形是都能解决,我没有意见。

其次是这样,很多人可能有一个误区,觉得这样打桩法,工作量很大。其实你要试一试, 我的经验是,每个模块的对外接口都是有限的,这个工作量其实相当有限。

最后说点玄学。我大学的时候看了很多黄易的武侠小说,里面的超级高手,常常在大战前 做一件事:为自己削一根长矛,或者打一把剑。以保证自己在大战前,对自己的武器有一 个“点点滴滴”的认识。

我个人觉得自己为每个用到的外部接口打桩,作用也在这里。单元测试的目的,说到底是 提升对自己代码的信心。你一两万行的代码,几十个函数,变成一个模块,然后黑盒地扔 到机架上,BIOS中,然后你一跑,有数据出来了。你知道里面经历了什么?该走的流程有 没有走过,各种边界有没有碰过?

UT是一个削长矛的过程,而确切知道,你自己的模块对各种结构的定义是什么。是这个削 长矛过程的一部分,这个必要性,你做一次就发现了。

这是我的经验。

补充2019/5/10:

这个文档上一次编辑的时间是2018年12月,我写完后,对应团队没有接受我的意见,继续 按原来的方案做UT,我给他们留了一句话:你们这样玩,撑不过一年。现在过了不到半年 ,他们的测试例都废了……这个事情证明了我的观点,但我一点都高兴不起来,因为这些资 源一定程度上也是我的。认知是成本,不过如此。